Damage cost model for air pollution in Finland

Mikko Savolahti, Niko Karvosenoja, Ville-Veikko Paunu, Timo Lanki, Väinö Nurmi, Jaakko Kukkonen

Finnish Environment Institute TFIAM 47

UTILITY

SYKE

Air Quality Programme 2030 As requested in the NEC directive

SYKE

- A delegation with representatives from ministries, research institutes and industry to make the national programme during 2018
- Calculation of baseline (CLE) emission projection not finished, but looks like all other targets except ammonia could be met without additional measures
- Possibly additional PaMs to improve air quality and reduce health impacts
 - Domestic wood combustion: Information campaigns, sauna stove measures
 - Road dust: Street cleaning, dust binding, studded tire restrictions
 - However, they are most likely to be descriptive and voluntary
 - Prioritisation of black carbon when taking PaMs to reduce PM2.5

Damage cost model: Contents

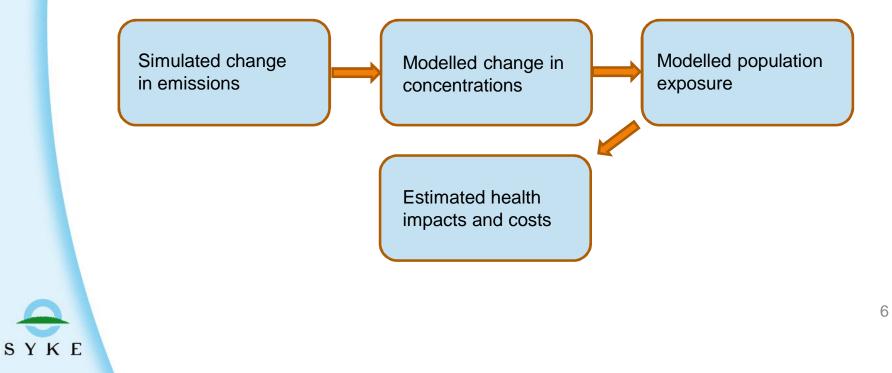
- Motivation for the work
- Modelling steps and the result
- Observations

Motivation

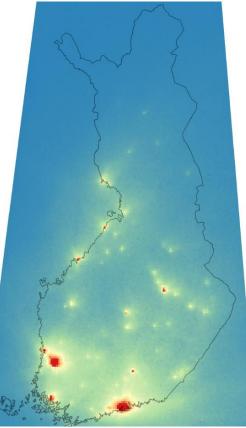
- Work requested by the Finnish Ministry of the Environments
 - What damage costs should be used when planning air quality policies in Finland?
 - What are the differences in damage costs between high/low altitude and urban/non-urban sources
 - How valid are costs from other European studies in Finnish impact assessments
- We* wanted to make the model as simple to use as possible for all interested parties

*Finnish Environment Institute, Finnish Meteorological Institute & National Institute for Health and Welfare

Monetary valuation of environmental impacts is challenging



Modelling the health impacts caused by changing PM2.5 concentrations

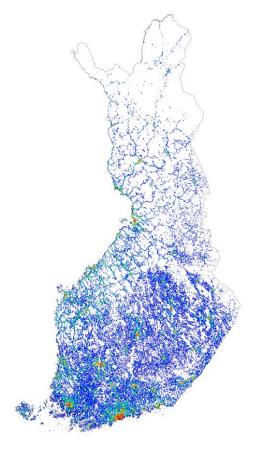

- Studied pollutants: PPM2.5 and the most important precursors for secondary particles (SO2, NOx, NH3)
- Impacts and costs calculated using impact pathway approach

Emissions and resulting concentrations

- All Finnish emissions calculated for 2015 and spatially distributed into a 250 m x 250 m grid
 - Distribution by plant locations, land/road use data, building registers, climate conditions and degree of urbanization
- Dispersion modelling
 - Source-receptor matrices for low-altitude PPM2.5 emissions (250 m x 250 m)
 - Atmospheric dispersion modelling (SILAM) for the rest (5 km x 5 km)

Includes also other relevant pollutants as well as long-range transboundary pollutants

Industry and power plants, SO2 -> PM2.5 SILAM model



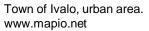
Population exposure and health impacts

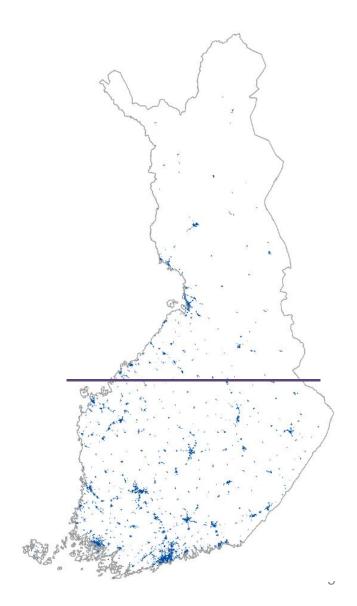
- Population data (250 m x 250 m grid) compared to changes in concentrations
- Included health impacts:
 - Premature mortality
 - Chronic bronchitis, asthma
 - Hospital treatment (heart/respiratory diseases)
 - Missed working days/reduced efficiency

• Premature mortality

- Two common methods used*:
- VOLY (Value of Life Year)
- VSL (Value of Statistical Life)
 - *From the NewExt study

Population density


Urban/non-urban areas


Urban area

- At least 200 residents in a grid cell
- Buildings no further than 200m apart

Damage cost model

Monetary benefits from reduction of emissions (1000€/ton)

	Location of emission reduction	
Low emission height	Urban area	Non-urban area
Road transport, primary PM _{2.5}	140 ¹ (80 ² -320 ³)	13 (7.6–31)
Non-road & machinery, Primary PM _{2.5}	170 (100–390)	5.0 (2.8–11)
Residential houses, wood stoves & sauna stoves Primary PM _{2.5}	70 (40–160)	8.7 (4.8–19)
	All of Finland	
Recreational houses, wood stoves & sauna stoves, Primary PM _{2.5}	5.5 (3.1–13)	
Residential houses, wood boilers, Primary $PM_{2.5}$	12 (6.6–27)	
Road transport, NO_x -> secondary $PM_{2.5}$	0.82 (0.46–1.8)	
Agriculture, NH ₃ -> secondary PM _{2.5}	1.2 (0.70–2.8)	
High stacks	Southern Finland	Northern Finland
Industry & power plants, Primary PM _{2.5}	10 (5.8–24)	5.7 (3.2–13)
	All of	Finland
Industry & power plants SO_2 -> secondary $PM_{2.5}$	1.3 (0.73–3.1)	
Industry & power plants, NO_x -> secondary $PM_{2.5}$	0.43 (0.24–1.0)	

¹ VOLY average (Value Of Life Year) 160 000 €

² VOLY median (Value Of Life Year) 69 000 €

³ VSL average (Value of Statistical Life) 2,65 milj. €.

https://wwwp.ymparisto.fi/IHKU/haittakustannuslaskuri/

Comparison to earlier studies

Health damage cost for ton of PM2.5

Study	Emission source	Unit cost
EEA, 2014 Brandt et al., 2013 Preiss et al., 2008 Our study	High stacks High stacks High stacks High stacks, Southern/Northern Finland	16 000€ 23 000€ 12 000€ 10 000/6000€
Bickel et al., 2003 (UNITE) Gynther et al. 2012 Our study	Traffic, Helsinki Traffic, Finnish towns Traffic, Finnish urban areas	526 000€ 23 000 – 680 000€ 140 000€

• Reasonably good comparability with normalized parameters

Where should the model be used

Expert work for policy support

- National level strategies
- Municipal level strategies
- Individual plants?

Challenges

- Requires an estimate for the amount of emission reduction in tons
- Gives average values
 - Not accurate in small-scale assessments
- Only includes health impacts (and only part of them)
- Cost for premature mortality "not up to date(?)"

Observations

My takeaways from the study

- Money talks, so these kind of tools are in demand
- Other environmental impacts should be included somehow
 - NEEDs project shows that biodiversity costs are relevant
- Valuing loss of life makes things difficult
 - Recent studies show much higher VSL values than the high end of our range
 - Everything is underestimated, this message is probably lost in the policy making process
- Even with an easy user interface, a lot of expertize is needed to actually use the model
 - Maybe some additional help for the user to make calculations, e.g. "1000 stoves produce x ton of PM2.5 emissions annually"

Observations

2/2

• Questions

- What cost should we use for premature death?
- How should ecosystem damage be included?

Thanks!

Web: http://www.syke.fi/hankkeet/ihku/ihkumalli

Contact: mikko.savolahti@ymparisto.fi +358 29 5251595 Finnish Environment Institute SYKE

